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Changes of growth morphologies are induced by a perturbation of the temperature distribution in the
surrounding of a growing xenon crystal. Apart from the dendritic morphology seaweed and doublon morpholo-
gies are found. We present a method which quantitatively describes growth morphologies by means of rota-
tional, scale, and translational invariant transformations. Evolutions of growth morphologies are represented as
paths in the morphology space. The presented method could be of some use for other fields of research where
qualitative and quantitative information of different classes of images has to be identified.
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I. INTRODUCTION

The formation of patterns is universal in nature. Patterns
are found, for example, on sea shells, snow crystals, mag-
netic domains, and grain structures in rocks[1]. The growth
of a stable phase at the expense of a metastable phase is a
prototype for the formation of complex spatio-temporal pat-
terns far from equilibrium, which evolve from homogenous
starting conditions. The solidification of metals during the
casting process, where crystals grow into a constitutionally
supercooled melt, is technologically significant. The micro-
structures formed during this process influence the mechani-
cal properties and the corrosion behavior of the final product.

Dendrites are an example of spatial patterns and have
been studied carefully since long ago. General reviews on
dendritic solidification can be found in[2–6]. Although the
governing equations for thermal solidification have been
known for a long time(Stefan problem—e.g.,[7]), it was
only in the last decade that the understanding of pattern for-
mation in nonlinear systems has remarkably improved. By
means of mathematical studies for two-dimensional systems
Brener et al. [8–10] developed a morphology diagram of
patterns found in diffusional growth. The crucial physical
parameters, which determine the structure of the pattern, are
the supercooling(controlling the growth velocity) and the
anisotropy of the surface tension(leading to nonaxisymmet-
ric growth). In their morphology diagram Breneret al. have
established stability regions of dendrites and seaweed. Sea-
weed structures were predicted to be found at sufficiently
low anisotropy of surface tension and high supercoolings,
dendrites at sufficiently low supercoolings and high enough
anisotropy of surface tension. Seaweed and doublon struc-
tures were found experimentally by Akamatsuet al. [11] for
solidification of an organic alloy in quasi two dimensions.
Doublons and seaweed were also discovered in three-
dimensional(3D) free growth experiments by Stalder and
Bilgram [12] and characterized by Singer[13].

Brener et al. suggested the characterization of growth
morphologies[8] by two different criteria: on the one hand,

it is distinguished between dendritic and seaweed structures
and, on the other hand, between compact and fractal growth.
The dendritic morphology is characterized as a pattern with
orientational order whereas patterns without obvious orienta-
tional order are called seaweed. Compact growth is defined
as growth at a constant average density. Fractal structures are
defined as patterns with self-similar or self-affine internal
structure with a scaling range of at least one order of mag-
nitude in length scales.

We argue that this discrimination between the morpholo-
gies is not sufficient to characterize structures in 3D experi-
ments because doublons in two and three dimensions possess
a well-defined axis of symmetry. Thus an orientational order
can be attributed to these structures, which would then lead
to a classification as “dendrite.” It has been stated that dou-
blons in two dimensions are the basic building blocks of
seaweed[10]. For thermal free growth in 3D experiments we
do not find the same behavior as has been predicted for 2D
systems because the topological freedom of structures in
three dimensions is different from the one in two dimensions.
Based on the experimental observation of transitions be-
tween 3D doublons and 3D seaweed we argue that doublons
and seaweed have to be treated as separate morphology
classes.

From the experimental point of view it is difficult to dis-
tinguish between compact and fractal growth as no determi-
nations of densities of doublons and seaweed are available
up to now. The only morphology classification left, which
could be applied in experiments, is the orientational order. To
obtain quantitative measures independently of the observer a
simple symmetry determination(which involves the manual
determination of the axis of growth) was not the best scheme
to apply; therefore, we have developed a more suitable clas-
sification scheme. In this paper a method is presented to
characterize growth morphologies quantitatively and thus al-
lows characterization of crystal morphologies as a function
of growth conditions.

II. EXPERIMENT

In our experiments we use the rare gas xenon as a model
substance for metals because(i) it forms a “simple liquid,”
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(ii ) it has a low melting entropy to form rough solid-liquid
interfaces, and(iii ) it crystallizes in fcc structure. Further-
more, xenon is transparent and allows opticalin situ obser-
vation of the growth process. As xenon crystallizes in the fcc
structure we find fourfold symmetry axes for dendritic
growth and four fins along the dendrite’s main axis. The side
branches develop at the ridges of these fins.

In our in situ experiments we investigate three-
dimensional xenon crystals during free growth into their su-
percooled melt. The undercooling of the melt is in the range
of 40 mKøDTø220 mK (corresponding to about 0.6
310−3øDø4310−3 in dimensionless units, withD
=DT/L /cp, whereDT, cp, and L are supercooling, specific
heat of the liquid, and latent heat, respectively) below the
triple point sTt=161.3897 Kd. The experimental setup con-
sists of a high-precision cryostat to stabilize temperature bet-
ter than ±10−4 K as long as necessary. The cryostat is cooled
with liquid nitrogen. An adjustable helium gas atmosphere
between the liquid nitrogen and the thermostating liquid(iso-
pentane) allows the heat flux to be regulated. Temperature is
measured by means of temperature sensitive resistors(Pt-
100). Heating is controlled by a commercial proportional-
integral-differential(PID) controller. A stirrer in the thermo-
stating liquid is producing a laminar flow and hence ensures
a homogenous temperature in the heat bath. The actual
growth vessel is immersed in the heat bath. In order to ini-
tiate the growth of the crystal we use the capillary injection
technique[14]: A capillary reaches into the growth vessel,
which is filled with liquid supercooled xenon. Upon initia-
tion the crystal is growing along the capillary until it reaches
the end and subsequently enters the state of free three-
dimensional thermal growth. The experimental apparatus al-
lows us to turn the capillary along its axis in order to orient
the crystal so that the maximal projection area can be ob-
served. It also allows us to shift the capillary up and down
(vertical translation) in order to follow the crystal during its
growth. A sketch of our experimental setup is given in Fig. 1.

A self-built optical imaging system(periscope) allows us
to observe the crystal during its free growth. We have tested
the optical resolution of the periscope to be 1.22mm. We use
a spatially homogenous cold light source to illuminate the
crystal. Xenon is optically transparent in liquid and solid
states. The crystal can therefore only be seen due to the
difference of the indices of refraction(nliquid=1.3918,nsolid
=1.4507 forl=546 nm) [15,16]. By means of a beam split-
ter and two cameras the images of growing crystals are re-
corded simultaneously by a high-resolution digital charge-
coupled-device(CCD) camera s128031024 pixelsd on a
computer and by an analog SVHS video with standard reso-
lution (5763768 pixels, 25 frames per second). This double
strategy was chosen in order to investigate different aspects
of the growth. The images of the digital camera are used for
detailed studies of the shape(geometrical aspects) whereas
video sequences are used for characterizing the dynamics of
the system(e.g., growth velocity). The image capture soft-
ware was developed in our laboratory: the software is able to
capture images at a speed of up to seven frames per second
with the given hardware of the PCI board. Images can be
taken manually or timer based. In our experiments a typical
time interval between image capture is 1–5 s. These images

are stored as 8-bit Tiff images and are analyzed after the
experiment. A more detailed description of the experimental
setup can be found in[13,17,18].

In Fig. 2 images of three morphologies 2(a) dendrites,
2(b) doublons, and 2(c) seaweed are given. Prototypically
these different morphologies have following properties.

Dendrite. The dendritic morphology possesses a fourfold
symmetry perpendicular to the axis of growth. On the four
fins side branches start growing. Although no direct coupling
between the fins exists the frequency of the side branch ap-
pearance is(prototypically) the same on each fin and crystals
show a strong mirror symmetry. The tip of the dendrite up to
a certain height does not show any side branches. Although it
is a still ongoing dispute on the exact shape of the dendrite
tip [19,20], it can be stated at least that its appearance is
convex and usually spear like. In a moving frame of refer-
ence, where the dendrite tip is placed in the origin, the shape
of the tip and the fins does not change. The side branches
move upwards, grow longer and interact with their neigh-
bors.

Doublon. The doublon morphology exhibits one symme-
try plane. The prototypical characteristic of this morphology
is that two main tips grow simultaneously and in parallel,
influencing and stabilizing each other. The creation of a dou-
blon starts with the splitting of the main tip of a dendrite.
The two tips evolve with the same velocity and hinder each
other to outgrow the other tip unless experimental inhomo-
geneities are perturbing the system. While doublons in two
dimensions possess a protected channel this is obviously not
the case in three dimensions. The 3D structure is topologi-
cally different from its two-dimensional pendant.

Seaweed. The seaweed morphology possesses neither any
apparent symmetry nor a distinct main tip in the projection.
The main property of this morphology is the continuous tip
splitting for any prominent tip(also side branches) in its
temporal evolution: the local tip radius increases until it
reaches a critical value, which causes the structure to split
(“tip splitting” ). One of the two tips is immediately outgrow-
ing the other one and starts increasing its tip radius again
whereas the other decelerates its growth and eventually stops
growing.

III. GROWING DIFFERENT MORPHOLOGIES

As mentioned in the previous section the growing crystal
can be turned and translated in the growth vessel. Although
every motion of the crystal in the melt is a perturbation of
the thermal environment of the crystal, measurements of the
tip radius have shown that “slow” changes(i.e., comparable
to the growth velocity of the crystal) do not disturb the crys-
tal in its growth. This allows us to observe the growth of
crystals over distances, which are longer than the way to
cross the field of vision of the periscope.

If a shift or a turn of the crystal is performed “fast,” then
the thermal environment of the growing crystal is changed
significantly. By such a procedure it is possible to induce
morphology changes of the crystals. The method found by
Stalder and Bilgram[12] is as follows: The crystal is shifted
downwards to regions in the growth vessel where the tem-
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perature is still very close to the supercooling before the
crystal entered the growth vessel through the capillary. This
corresponds to a vertical displacement in the morphology
diagram of Breneret al. [8–10]. If the perturbation of the
crystal is strong enough, the morphology will change from
dendritic morphology to a high supercooling morphology—
i.e., seaweed or doublon. Unfortunately the shifting down to
colder regions leads out of the field of vision of our optical
imaging system. To bring the crystal back into the field of
vision we have to shift it up again. This shifting up does not
reestablish the old stationary temperature distribution and

therefore we can observe a high supercooling morphology,
long enough to quantitatively investigate it. After 180–240 s
(corresponding to the time to grow the distance of about two
to three side branch spacings) the system relaxes back to the
stationary state—i.e., dendritic solidification.

There are two morphological transitions: the transition
from dendritic growth to high supercooling growth forms
and the relaxation back to dendrites. Both transitions are re-
lated to thermal gradients at the interface of the growing
dendrite. In the following discussion the surface of the crys-
tal can be considered to be isothermal(i.e., the Gibbs-

FIG. 1. Experimental setup: 1, growth vessel
with the capillary; 2, periscope; 3, illumination
system; 4, heat bath(isopentane); 5, tube to pro-
vide a laminar flow; 6, stirrer; 7, big mass of
stainless steel to reduce the vibrations of the stir-
rer; 8, liquid nitrogen; 9, adjustable helium gas
atmosphere to control the cooling power; 10,
heater; 11, temperature sensor; 12, combined ro-
tary and linear motion drive to lift and to rotate
the capillary; 13, zoom lens(13 -73); 14, digital
CCD-camera and analog SVHS video device; 15,
power supplies and computer interface; 16, high
precision linear positioning system; 17, last field
lens.

FIG. 2. Typical results of free three-
dimensional thermal growth.(a) Dendritic mor-
phology, (b) doublon morphology, and(c) sea-
weed morphology.
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Thomson effect is small compared to the undercooling of the
melt close to the solid-liquid interface). During the steady
state of dendritic growth there are high thermal gradients in
the melt close to the dendrite tip and these gradients at the
crystal surface decrease along the fins with the distance to
the tip. The growth velocities normal to the crystal interface
are assumed to be proportional to the thermal gradient at the
solid-liquid interface. A sudden shift of the crystal into the
region of the growth vessel with a more or less homogeneous
temperature distribution leads instantly to a homogeneous
temperature distribution around the crystal with constant
temperature gradients all over the crystal surface. Due to the
increasing supercooling, the growth rate normal to the inter-
face increases and is approximately the same at the tip and at
the fins. This leads to an increase in the tip radius. An in-
crease of the tip radius upon an increase of the supercooling
is not compatible with steady-state growth. It leads away
from the stability conditions of a steady-state dendrite and
indeed tip splitting is observed. Now one has to consider,
which structures are formed by this instability. The formation
of side branches is one possibility but we observe doublon or
seaweed growth. Flow due to the shift may increase the su-
percooling but the tip splitting is observed about 40–60 s
after the shift when the flow due the shift has stopped.

After the formation of doublons two distinct and symmet-
ric tips mutually stabilize their growth. No more tip splitting
is observed[Fig. 2(b)]. The second possibility is the forma-
tion of seaweed morphology, which is characterized by suc-
cessive tip splitting of any prominent tip(also side
branches). This leads to a loss of symmetry of the crystal
morphology, which is typical for seaweed[Fig. 2(c)]. The
relaxation of doublons happens when the initially symmetri-
cally growing fingers of the doublon are slightly perturbed.
Then one of the fingers takes the lead and leaves the other
behind. When the influence of the losing finger decreases,
the winning finger relaxes back to dendritic growth. The re-
laxation from seaweed back to dendrites happens when the
undercooling in the region of the crystal decreases and one of
the prominent tips is stabilizing and not thickening again to a
critical curvature that allows tip splitting.

IV. IMAGE PROCESSING AND TRANSFORMATIONS

In order to scientifically investigate the acquired images
preliminary calculations are performed. The most vital step
is to extract the contour line of the growing crystal. The
images are first preprocessed by a gray level histogram
stretching in order to obtain the maximal possible contrast
enhancement. Consequently the images are filtered with the
Marr-Hildreth-operator(Laplacian of Gaussian) [21] so that
edges are enhanced. This filter transforms the problem of
detecting the contour to finding transitions of zero crossings
of the filtered data. As a next step an edge detecting routine
is applied and the contour is extracted. Subsequently the con-
tour must be cleaned of extraction artifacts and reordered.
This step is not necessary for overall applied algorithms such
as the shape detection method presented in the following.
However, in order to calculate derivatives or angular distri-
butions this reordering is needed. The last step of the contour

extraction process consists of scaling the contour according
to its real size: the images taken show only a projection of
the real shape; therefore, an appropriate scaling must be ap-
plied. A thorough introduction to the process of contour ex-
traction in our images is given in[22].

The extracted contours of our experimental crystals can
be classified by the human eye into three different classes:
dendrites, doublons, and seaweed. Although this distinction
is made very easily by a trained operator, it has some severe
drawbacks:(i) it is only qualitative and(ii ) a human operator
must judge every image manually. In order to overcome
these limitations we considered a computer-based approach
to be desirable. The biggest obstacle to overcome therefore
was to find a way to represent the given shapes of the crystal
independently of the respective orientation, position, and
size. It was thus necessary to find an invariant measure under
rotation, scaling, and translation.

(i) The basic concept of this invariant representation is the
well-known translation property of the Fourier transform
(also known as Fourier shift theorem): Two functionsf1sx,yd
and f2sx,yd are given, which differ only by a displacement
sx0,y0d, so that

f2sx,yd = f1sx − x0,y − y0d. s1d

Their Fourier transformsF1 andF2 differ by a phase factor
only:

F2skx,kyd = e−2piskxx0+kyy0dF1skx,kyd, s2d

wherekx, ky are the spatial frequencies. It is thus clear that
the intensities of the Fourier components are identical for
both functions:uFiu2=FiFi for i =1,2 and thereforeuF1u= uF2u.
Hence, a shift in the spatial domain affects only the phase
components of the functions in the frequency domain.

(ii ) Rotation of the functionfsx,yd in the spatial domain
by an angleu causes the Fourier transform to be rotated by
the same angle:fsx cosu+y sinu ,−x sinu+y cosud be-
comes in the frequency domain

Fskx cosu + ky sinu,− kx sinu + ky cosud. s3d

(iii ) Scaling of the spatial axes with the scaling factorc
causes an inverse scaling of the frequency axes:fscx,cyd
becomes in the frequency domain

1

c
FSkx

c
,
ky

c
D . s4d

It is easy to see that only translational invariance is achieved
in a straightforward way. However, it is possible to convert
the functions into another coordinate system where scaling
and rotation are represented as shifts. Let us consider the
coordinate transformation of the log-polar mapping: Every
point in a given domain[i.e., sx,ydTPR2] is transformed
according to

x = em cosu,

y = em sinu, s5d

wherer =Îx2+y2=em, mPR is the Euclidian distance to the
origin, and 0øuø2p is the angle to thex axis. It is obvious
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that this mapping is bijective. In this coordinate system scal-
ing and rotation appear as shifts in the respective coordi-
nates: scaling is related to

scx,cyd ⇒ sm + log c,ud, s6d

whereas rotation corresponds to

„x cossu + fd + y sinsu + fd,− x sinsu + fd + y cossu

+ fd… ⇒ sm,u + fd. s7d

Taking the Fourier transform of a log-polar mapped function
is therefore(by the properties of the Fourier transform) in-
variant under scaling and rotation. This invariance can also
be achieved by the Fourier-Mellin-transform

FMskx,kyd =E
−`

` E
0

2p

fsem cosu,em sinudeiskxm+kyuddmdu.

s8d

It can be shown that the Fourier-Mellin transform is identical
to the combined log-polar and Fourier transform[23].

We assume two invariant operatorsF and FM. Here F
extracts the modulus of the Fourier transform andFM the
modulus of the Fourier-Mellin transform. When applying the
combined operators to an imagefsx,yd we find

I1 = fFM + Fgfsx,yd. s9d

The sign+ denotes the composition of different transforma-
tions applied to the image. The same operator can be applied
to an image, which was translated, rotated, and scaled:

I2 = fFM + F + Rsud + Sssd + Tsx0,y0dgfsx,yd s10d

=fFM + Rsud + F + Sssd + Tsx0,y0dgfsx,yd s11d

=FFM + Rsud + SS1

s
D + F + Tsx0,y0dG fsx,yd s12d

=fFM + Fgfsx,yd s13d

Therefore the representation is indeed invariant under rota-
tion, scaling, and translation. Hence the steps to achieve an
RST invariant representation of an image consists of(i) a
Fourier transform of the original image to remove transla-
tional differences,(ii ) mapping of the calculated intensities
into the sm ,ud coordinate system(log-polar mapping) (i.e.,
rotational and scaling differences are transformed to shifts),
and(iii ) application of another Fourier transform in order to
remove the newly transformed shifts. The RST invariant rep-
resentation corresponds to the intensities of the transformed
image.

This method of RST invariant representations is also used
in the field of machine vision and the watermarking of im-
ages. The idea there is to add a nonvisible “water mark” in
the phase components of the RST invariant representation
and transform it back. The hope is that the watermark per-
sists even if a digital image is transformed, cropped, printed,
and scanned again. Further details can be found in[24–26].

The RST invariant representation leads to a unique char-
acterization of the different morphologies. We have adopted

following strategy: For every morphology class we have se-
lected a number of typical examples. For each manually se-
lected example the contour was extracted and reordered[22].
We then have measured the angles from each contour point
to the next and collected these angles into a histogram(an-
gular histogram). The histogram is bent to a circle to provide
an immediate correlation of the angular orientations to the
complexity of the crystal shape. The histograms are shown in
Fig. 3. We have determined the angular histogram of the
contour line up to a chosen height of 15-tip radii from the tip
and found that it is possible toqualitativelycharacterize the
contours into the different morphology classes by counting
the number of extrema occurring in the histogram. For a
dendrite two extrema are found[Fig. 3(a)]. The length of the
arrows next to the dendrite tip indicate approximately the
peaks of the angular histogram. For the doublon morphology
four extrema are found[Fig. 3(b)]. As for the seaweed mor-
phology the distribution is very noisy and many different and
uncorrelated extrema are found due to the strongly meander-
ing shape of seaweed[Fig. 3(c)]. The distance of 15-tip radii
was chosen because for higher values the influence of the
side branches disturb the angular histogram and no meaning-
ful selection can be made any more. For the seaweed and
doublon morphology naturally no tip radius is defined. How-

FIG. 3. Angular histograms of different morphologies are used
to select typical examples for each morphology class for the extrac-
tion of prototypes. Each morphology shows a different amount of
extrema in the region up to a chosen distance of 15-tip radii from
the tip. (a) The dendritic morphology shows two distinct peaks,(b)
the doublon morphology shows four peaks, and(c) the seaweed
morphology shows a large number of uncorrelated peaks.
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ever, we have used the tip radius corresponding to the nomi-
nal supercooling of the melt before the experiment started as
the corresponding length scale. The tip radius can be ex-
pressed as a function of the supercooling[17]:

RexptsDTd = s5.2 ± 0.4dDT−0.83±0.03, s15d

whereRexpt is given inmm andDT in K.
With the method of angular histograms it was possible to

exclude much of the arbitrariness, which was naturally given
by the manual selection of “beautiful” nondegenerated ex-
amples of each morphology class. Altogether we have used
44 contours of dendrites[selected from experiments of 6
different supercoolings between 80 and 180 mK, 17 contours
of doublons(three different supercoolings between 80 and
130 mK), and 29 contours of seaweeds(three different su-
percoolings between 100 and 140 mK)] as a database. Al-
though we use the capillary for seed selection, we observe
that not all crystals grow along the same crystal orientation
through the capillary; thus, the contours from different ex-
periments do not grow along the same directions and have
different positions.

The contours were subsequently transformed to the RST
invariant representation. For every class all transformed ex-
ample representants were averaged in order to extract a pro-
totype for the respective class. We thus have found three 2D
matrices of averaged intensities of a morphology class that
are now considered to be prototypes:

Ipk
si, jd =

1

nk
o
l=1

nk

Ik,lsi, jd, 1 ø i ø Nx, 1 ø j ø Ny,

s16d

wherek denotes the morphology index(k=1 dendritic,k=2
doublon,k=3 seaweed). Nx and Ny are the size of the 2D
domain, andnk is the number of the representants of the
morphology classk. Here Ipk

si , jd and Ik,lsi , jd are the inten-
sities of the prototypes and the transformed representants,
respectively.

In order to position a contour between the different
classes we have used the following scheme: a given contour
is first transformed to the RST invariant representation. Sub-
sequently the Euclidean distance to the three prototypes is
determined:

dk =Îo
j=1

Ny

o
i=1

Nx

fICsi, jd − Ipk
si, jdg2, k = 1,2,3, s17d

wheredk is the distance to the respective morphology class
and ICsi , jd is the intensity of the transformed contour. The
position of the contour in the morphology space is deter-
mined as follows: The morphologyM of a contourC is given
by the minimal distance to the prototypes:

MsCd = kmin dksCd,

where M P h1,2,3j determines the origin from which the
other two distances are plotted: we have these three origins
chosen to bepi =(cosswid ,sinswid)T, i =1,2,3, with wi

=p /6 ,p−p /6 ,3p /2. The position of the transformed con-
tour is then given by

pMsCd + raspa − pMsCdd + rbspb − pMsCdd, s18d

wherea,b are the indiceshk=1,2,3ukÞMsCdj. The values
are determined by considering the following relations:

ek =
1

c
fdk − minsdkdg s19d

and

ra/b = 1 −
arctansekd + p/2

p
. s20d

The function arctan was chosen to map all possible distances
to 0.5–1(ekù0, obviouslyeMsCd is 0). Therefore the values
for ra/b are in the range 0ø ra/bø0.5. Here 0.5 is the maxi-
mal distance that can occur. Otherwise the distance to at least
one other morphology would become smaller and the detec-
tion would find a change in the morphology resulting in a
different origin. This nontrivial mapping was chosen in order
to improve the separation of the representants of the respec-
tive morphology classes.

We would like to note some points about implementa-
tional aspects of the presented method: The Fourier trans-
form was implemented by using fast Fourier transform
(FFT). It is well known that the FFT can only transform
vectors of length that are equal to a power of 2s2nd. We
therefore have chosen a fixed size 512sn=9d and have de-
termined the bounding box of our contour. If the box was
bigger than the chosen size, we have scaled the box accord-
ingly to fit into the given size. Otherwise the contour was left
as it was. As the RST transform is invariant under scaling we
were allowed to pretransform the data without changing the
results.

For the log-polar mapping we have adopted a bilinear
back-transform scheme: instead of transforming the FFT in-
tensitiesIsx,yd to Ism ,ud we have calculated for the discrete
values ofsm ,ud (arbitrarily chosen size 512 each) the result-
ing intensity by bilinear interpolation from the intensities of
the FFT. Of course the size for the log-polar domain was
chosen again accordingly so that it was possible to apply the
2D FFT.

V. RESULTS AND DISCUSSIONS

In Fig. 4 the temporal evolution of a growing xenon crys-
tal is shown by a superposition of extracted contours. The
time difference between two successive contours isDt=5 s.
The first contour marked by arrow 1 can clearly be correlated
to a dendritic morphology. With the temporal evolution the
dendrite tip is successively becoming massive and the tip
radius is increasing. As a consequence the tip velocity is
remarkably slowing down as can be seen already qualita-
tively by looking at the distance between successive tip po-
sitions in the region depicted by arrow 2. When a critical
curvature at the tip is reached the tip becomes unstable and
performs a tip splitting leading to doublonic morphology.
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Due to the method, morphology changes are induced we are
only able to observe transient morphology states as men-
tioned in Sec. III. After a while(as a consequence of the fact
that the experimental conditions at the two tips are not iden-
tical) one of the tips will eventually have an advantage over
the other and outgrow it. The winning tip will after a relax-
ation time, when the influence of the decelerating finger of
the doublon is more and more fading away, relax to a den-
dritic morphology again. This is depicted in Fig. 5. We have
applied the RST invariant prototype matching to this mor-
phology change. The result is given in Fig. 6. The example
representants, which were used to extract the prototypes, are
plotted as circles in their respective morphology class. It can
be seen that the first contours are found to be dendritic as
expected. Simultaneously with the increase of the tip radius

before the tip splitting the distance to the dendrite prototype
is increasing. Shortly after the splitting the morphology de-
tection indicates a morphology change. Although the de-
tected class of the contours is found to be doublonic, the
contours remain initially quite far from the doublon proto-
type. With the increasing size of the tips growing in parallel,
however, it moves closer to the prototype. Due to the tran-
sient nature of this morphology change the influence of the
outgrowing winning tip becomes noticeable, which leads to
an increased distance from the doublonic prototype again. As
the winning tip “feels” less influence from the other tip the
morphological position moves rather abruptly back to the
dendritic morphology as depicted by arrow 2 in Fig. 6.

An even more complex behavior of morphological transi-
tions is given in Fig. 7. Again the evolution of the crystal is
shown by superimposed contours with time stepsDt=5 s. It
is easy to see by eye that the starting morphology is den-
dritic. The same scenario as in the first example occurs in the
beginning: the increase of the tip radius corresponds also to
an increase of the distance(arrow 1) from the dendritic pro-
totype. Again a tip splitting leads to a change of the morphol-
ogy class to a doublon(arrow 2). However, this time the
doublonic structure is not able to evolve as the right tip is
taking the lead immediately and grows bigger increasing the
tip radius and a little bit later the left tip starts behaving as a
degenerate side branch very near the(winning) tip. The
structure altogether evolves into a seaweed morphology. It
can easily be seen that in the presented morphology plot
(Fig. 8) a smooth transition between the three morphology
classes is found.

For the first time it is possible to quantitatively specify
paths of morphology transitions in the morphology space and
to compactify results of experimentally grown diffusional
growth structures into easily readable summaries of different
transitions.

We have presented a method of RST invariant morphol-
ogy detection based on properties of the Fourier transform
and the log-polar mapping. We have shown that it is possible

FIG. 4. Superimposed contours illustrate the temporal evolution
of a crystal. The time interval between two successive contours is
Dt=5 s. A morphology change from dendritic(arrow 1) to dou-
blonic (arrow 3) morphology can be observed. The transition takes
place by an increase of the tip radius, which leads to a tip splitting
(arrow 2).

FIG. 5. Superimposed contours of the relaxation of the doublon
morphology to dendritic morphology. Due to experimental inhomo-
geneities, the left tip has a small advantage over the right one and
outgrows it and thus evolves back to a single tip dendritic
morphology.

FIG. 6. RST invariant morphology detection: the transition from
dendritic to doublonic morphology and the relaxation back to a
dendrite is marked as a path(triangles) in the morphology space.
The arrows 1 and 2 indicate the directions of the transitions. The
circles in each corner represent the position of the examples chosen
to extract the prototypes.
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to quantitatively describe the morphology transitions as paths
in the morphology space. It was stated that the changes of
patterns are usually smooth, however with the notion that the
distances between two successive images tend to get bigger
upon a qualitative change of the respective morphology
class.

We would like to mention that this method might have
also a small drawback: when analyzing bigger structures
with side branches of the size comparable to the tip or even
bigger, it might happen that the detection may fail. For ex-
ample, a seaweed structure could be interpreted as a dendrite
because of a prominent side branch. The same could happen
with a dendrite having two big neighboring side branches.
Due to the rotational invariance, the detection would eventu-
ally pretend to find a doublon. We would like to emphasize
that this is not a failure of the method itself but rather a
logical consequence of analyzing rotational invariant struc-
tures. We have found, however, that this case happened only
on two of 650 analyzed contours, which proves that the pre-

sented method is rather robust on detection. With this
method it is possible to overcome the limitations of a human
operator: namely, we can automate the process and receive
quantitative information about morphologies and their devel-
opment with time. It should be noted that this quantitative
measure should not be interpreted as, for example, “how
dendritic” a structure is. It is rather possible to(i) qualita-
tively classify a given structure instead and(ii ) furthermore
retrieve quantitative information about which additional fea-
tures (i.e., doublonic, seaweed like, dendritic) the given
structures possess depending on the distance from the respec-
tive morphology prototype.

We believe that the presented method could be of some
use for other fields of research where qualitative and quanti-
tative information of different classes of patterns has to be
found and detected.
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