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Quantitative description of morphological transitions in diffusion-limited growth
of xenon crystals
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Changes of growth morphologies are induced by a perturbation of the temperature distribution in the
surrounding of a growing xenon crystal. Apart from the dendritic morphology seaweed and doublon morpholo-
gies are found. We present a method which quantitatively describes growth morphologies by means of rota-
tional, scale, and translational invariant transformations. Evolutions of growth morphologies are represented as
paths in the morphology space. The presented method could be of some use for other fields of research where
qualitative and quantitative information of different classes of images has to be identified.
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I. INTRODUCTION it is distinguished between dendritic and seaweed structures

The formation of patterns is universal in nature. Patterngnd. on the other hand, between compact and fractal growth.
are found, for example, on sea shells, snow crystals, magthe dendritic morphology is characterized as a pattern with
netic domains, and grain structures in ro¢ks The growth orientational order whereas patterns without obvious orienta-
of a stable phase at the expense of a metastable phase i§i@nal order are called seaweed. Compact growth is defined
prototype for the formation of complex spatio-temporal pat-as growth at a constant average density. Fractal structures are
terns far from equilibrium, which evolve from homogenous defined as patterns with self-similar or self-affine internal
starting conditions. The solidification of metals during thestructure with a scaling range of at least one order of mag-
casting process, where crystals grow into a constitutionallynitude in length scales.
supercooled melt, is technologically significant. The micro- We argue that this discrimination between the morpholo-
structures formed during this process influence the mechangies is not sufficient to characterize structures in 3D experi-
cal properties and the corrosion behavior of the final productments because doublons in two and three dimensions possess

Dendrites are an example of spatial patterns and havg well-defined axis of symmetry. Thus an orientational order
been studied carefully since long ago. General reviews 0@an be attributed to these structures, which would then lead
dendritic solidification can be found if2—6]. Although the (5 5 cassification as “dendrite.” It has been stated that dou-
governing equations for thermal solidification have beemyjons in two dimensions are the basic building blocks of
known for a long time(Stefan problem—e.gl7]), it was  gaaweeq10]. For thermal free growth in 3D experiments we
only in t.he Iast.decade that the understanding .of pattern forg, not find the same behavior as has been predicted for 2D
mation in nonlinear systems has remarkably improved. By, stems because the topological freedom of structures in
means of mathematical studies for two-dimensional systemgee dimensions is different from the one in two dimensions.
Brener et al. [8-10 developed a morphology diagram of gageq on the experimental observation of transitions be-
patterns found in diffusional growth. The crucial physical yyeen 3D doublons and 3D seaweed we argue that doublons

parameters, which determine the structure of the pattern, atg. seaweed have to be treated as separate morphology
the supercoolingcontrolling the growth velocity and the  |55ses.

anisotropy of the surface tensigieading to nonaxisymmet-  rrom the experimental point of view it is difficult to dis-

ric growth). In their morphology diagram Brenet al. have  inqyjish between compact and fractal growth as no determi-
established stability regions of dendrites and seaweed. Segxiinns of densities of doublons and seaweed are available
weed structures were predicted to be found at suff|C|entI)0p to now. The only morphology classification left, which
low anisotropy of surface tension and high supercoolingSeq 4 be applied in experiments, is the orientational order. To
dendrites at sufficiently low supercoolings and high enough,ain quantitative measures independently of the observer a
anisotropy of surface tension. Seaweed and doublon Stru‘éimple symmetry determinatiofwhich involves the manual
tures were found experimentally by Akamawstal. [11] for  jetermination of the axis of growthvas not the best scheme
solidification of an organic alloy in quasi two dlme.nS|ons. to apply; therefore, we have developed a more suitable clas-
Doublons and seaweed were also discovered in threggfication scheme. In this paper a method is presented to
dimensional(3D) free growth experiments by Stalder and .paracterize growth morphologies quantitatively and thus al-

Bilgram [12] and characterized by Singgt3]. lows characterization of crystal morphologies as a function
Brener et al. suggested the characterization of growth ¢ growth conditions.

morphologieq 8] by two different criteria: on the one hand,

Il. EXPERIMENT
*Electronic address: hsinger@solid.phys.ethz.ch In our experiments we use the rare gas xenon as a model
"Electronic address: bilgram@solid.phys.ethz.ch substance for metals becausgit forms a “simple liquid,”
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(i) it has a low melting entropy to form rough solid-liquid are stored as 8-bit Tiff images and are analyzed after the
interfaces, andiii) it crystallizes in fcc structure. Further- experiment. A more detailed description of the experimental
more, xenon is transparent and allows opticasitu obser-  setup can be found ifi13,17,18.

vation of the growth process. As xenon crystallizes in the fcc  In Fig. 2 images of three morphologiegag dendrites,
structure we find fourfold symmetry axes for dendritic 2(b) doublons, and @) seaweed are given. Prototypically
growth and four fins along the dendrite’s main axis. The sidehese different morphologies have following properties.
branches develop at the ridges of these fins. Dendrite The dendritic morphology possesses a fourfold

In our in situ experiments we investigate three- symmetry perpendicular to the axis of growth. On the four

dimensional xenon crystals during free growth into their Su+g sige hranches start growing. Although no direct coupling
percooled melt. The undercooling of the melt is in the rang

. %etween the fins exists the frequency of the side branch ap-
(>)<f 1§2§§j fj(zr%o irr?K d(i(ri:)eraes?gr?lgggg u::i)ts ab\(l)vti{{th AO'6 pearance igprototypically) the same on each fin and crystals
“AT/L/c. whereAT. c. andL are supercoolir;g specific show a strong mirror symmetry. The tip of the dendrite up to
heat of the liquid and latent heat FESpecti\)dj,ﬁiOW the @ certain height does not show any side branches. Although it
triple point (Tt:lél.3897 K. The e;<perimental setup con- is a still ongoing dispute on the exact shape of the dendrite

sists of a high-precision cryostat to stabilize temperature belt—ip [19,20, it can be stateq at least tha’_[ its appearance is
ter than +10° K as long as necessary. The cryostat is cooled®nVex and usually spear like. In a moving frame of refer-
with liquid nitrogen. An adjustable helium gas atmosphere®nCe: where the dendrite tip is placed in the origin, the shape

between the liquid nitrogen and the thermostating ligisd- ~ Of the tip and the fins does not change. The side branches
pentang allows the heat flux to be regulated. Temperature ignove upwards, grow longer and interact with their neigh-
measured by means of temperature sensitive resigRirs bDOrS.
100). Heating is controlled by a commercial proportional- ~Doublon The doublon morphology exhibits one symme-
integral-differential(PID) controller. A stirrer in the thermo- Iry plane. The prototypical characteristic of this morphology
stating liquid is producing a laminar flow and hence ensureds that two main tips grow simultaneously and in parallel,
a homogenous temperature in the heat bath. The actulyfluencing and stabilizing each other. The creation of a dou-
growth vessel is immersed in the heat bath. In order to iniPlon starts with the splitting of the main tip of a dendrite.
tiate the growth of the crystal we use the capillary injectionThe two tips evolve with the same velocity and hinder each
technique[14]: A capillary reaches into the growth vessel, other to outgrow the other tip unless experimental inhomo-
which is filled with liquid supercooled xenon. Upon initia- 9eneities are perturbing the system. While doublons in two
tion the crystal is growing along the capillary until it reachesdimensions possess a protected channel this is obviously not
the end and subsequently enters the state of free thre#e case in three dimensions. The 3D structure is topologi-
dimensional thermal growth. The experimental apparatus afcally different from its two-dimensional pendant.
lows us to turn the capillary along its axis in order to orient SeaweedThe seaweed morphology possesses neither any
the crystal so that the maximal projection area can be ob@Pparent symmetry nor a distinct main tip in the projection.
served. It also allows us to shift the capillary up and downThe main property of this morphology is the continuous tip
(vertical translationin order to follow the crystal during its SPlitting for any prominent tialso side branchgsn its
growth. A sketch of our experimental setup is given in Fig. 1.temporal evolution: the local tip radius increases until it
A self-built Optica| |mag|ng Systerfperiscope allows us reaches a critical Value, which causes the structure to Spllt
to observe the crystal during its free growth. We have testef tiP splitting”). One of the two tips is immediately outgrow-
the optical resolution of the periscope to be 1,22. We use ing the other one and starts increasing its tip radius again
a spatially homogenous cold light source to illuminate thewhergas the other decelerates its growth and eventually stops
crystal. Xenon is optically transparent in liquid and solid 9rowing.
states. The crystal can therefore only be seen due to the
difference of the indices of refractiofm;q,ig=1.3918,Ngq
=1.4507 forn=546 nn) [15,16. By means of a beam split-
ter and two cameras the images of growing crystals are re- As mentioned in the previous section the growing crystal
corded simultaneously by a high-resolution digital charge-can be turned and translated in the growth vessel. Although
coupled-device(CCD) camera(1280X 1024 pixel$ on a  every motion of the crystal in the melt is a perturbation of
computer and by an analog SVHS video with standard resahe thermal environment of the crystal, measurements of the
lution (576X 768 pixels, 25 frames per secondhis double tip radius have shown that “slow” changés., comparable
strategy was chosen in order to investigate different aspects the growth velocity of the crystatio not disturb the crys-
of the growth. The images of the digital camera are used fotal in its growth. This allows us to observe the growth of
detailed studies of the shapgeometrical aspectsvhereas crystals over distances, which are longer than the way to
video sequences are used for characterizing the dynamics ofoss the field of vision of the periscope.
the system(e.g., growth velocity. The image capture soft- If a shift or a turn of the crystal is performed “fast,” then
ware was developed in our laboratory: the software is able tthe thermal environment of the growing crystal is changed
capture images at a speed of up to seven frames per secosignificantly. By such a procedure it is possible to induce
with the given hardware of the PCI board. Images can benorphology changes of the crystals. The method found by
taken manually or timer based. In our experiments a typicaStalder and Bilgranf12] is as follows: The crystal is shifted
time interval between image capture is 1-5 s. These imagetownwards to regions in the growth vessel where the tem-

Ill. GROWING DIFFERENT MORPHOLOGIES
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FIG. 1. Experimental setup: 1, growth vessel
with the capillary; 2, periscope; 3, illumination
system; 4, heat battisopentang 5, tube to pro-
vide a laminar flow; 6, stirrer; 7, big mass of
stainless steel to reduce the vibrations of the stir-
rer; 8, liquid nitrogen; 9, adjustable helium gas
atmosphere to control the cooling power; 10,
heater; 11, temperature sensor; 12, combined ro-
tary and linear motion drive to lift and to rotate
the capillary; 13, zoom lend X -7X); 14, digital
CCD-camera and analog SVHS video device; 15,
power supplies and computer interface; 16, high
precision linear positioning system; 17, last field
lens.

perature is still very close to the supercooling before theherefore we can observe a high supercooling morphology,
crystal entered the growth vessel through the capillary. Thisong enough to quantitatively investigate it. After 180—-240 s
corresponds to a vertical displacement in the morphologycorresponding to the time to grow the distance of about two
diagram of Brenert al. [8-10. If the perturbation of the to three side branch spacinghe system relaxes back to the
crystal is strong enough, the morphology will change fromstationary state—i.e., dendritic solidification.

dendritic morphology to a high supercooling morphology— There are two morphological transitions: the transition
i.e., seaweed or doublon. Unfortunately the shifting down tadrom dendritic growth to high supercooling growth forms
colder regions leads out of the field of vision of our optical and the relaxation back to dendrites. Both transitions are re-
imaging system. To bring the crystal back into the field oflated to thermal gradients at the interface of the growing
vision we have to shift it up again. This shifting up does notdendrite. In the following discussion the surface of the crys-
reestablish the old stationary temperature distribution andal can be considered to be isotherniak., the Gibbs-

k | !* %
250 ym 250 ym
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FIG. 2. Typical results of free three-
dimensional thermal growth(a) Dendritic mor-
phology, (b) doublon morphology, andc) sea-
weed morphology.
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Thomson effect is small compared to the undercooling of thextraction process consists of scaling the contour according
melt close to the solid-liquid interfageDuring the steady to its real size: the images taken show only a projection of
state of dendritic growth there are high thermal gradients irthe real shape; therefore, an appropriate scaling must be ap-
the melt close to the dendrite tip and these gradients at thglied. A thorough introduction to the process of contour ex-
crystal surface decrease along the fins with the distance tiwaction in our images is given if22].
the tip. The growth velocities normal to the crystal interface The extracted contours of our experimental crystals can
are assumed to be proportional to the thermal gradient at thee classified by the human eye into three different classes:
solid-liquid interface. A sudden shift of the crystal into the dendrites, doublons, and seaweed. Although this distinction
region of the growth vessel with a more or less homogeneouis made very easily by a trained operator, it has some severe
temperature distribution leads instantly to a homogeneoudrawbacksi) it is only qualitative andii) a human operator
temperature distribution around the crystal with constanmust judge every image manually. In order to overcome
temperature gradients all over the crystal surface. Due to thinese limitations we considered a computer-based approach
increasing supercooling, the growth rate normal to the interto be desirable. The biggest obstacle to overcome therefore
face increases and is approximately the same at the tip and @&as to find a way to represent the given shapes of the crystal
the fins. This leads to an increase in the tip radius. An inindependently of the respective orientation, position, and
crease of the tip radius upon an increase of the supercoolirgjze. It was thus necessary to find an invariant measure under
is not compatible with steady-state growth. It leads awayrotation, scaling, and translation.
from the stability conditions of a steady-state dendrite and (i) The basic concept of this invariant representation is the
indeed tip splitting is observed. Now one has to considenwell-known translation property of the Fourier transform
which structures are formed by this instability. The formation(also known as Fourier shift theorgrifwo functionsf,(x,y)
of side branches is one possibility but we observe doublon oand f,(x,y) are given, which differ only by a displacement
seaweed growth. Flow due to the shift may increase the sux,,y,), so that
percooling but the tip splitting is observed about 40—-60 s
after the shift when the flow due the shift has stopped. f2(%,y) = f1(X = Xo,Y = Yo)- (1)

After the formation of doublons two distinct and symmet- Theijr Fourier transform&, andF, differ by a phase factor
ric tips mutually stabilize their growth. No more tip splitting only:
is observedFig. 2(b)]. The second possibility is the forma-
tion of seaweed morphology, which is characterized by suc- Fa(Ky. k) = €270 KY0E  (k k), 2

cessive tip spliting of any prominent tigalso side \perey k, are the spatial frequencies. It is thus clear that

brancrrel}a This r:ga;]d_s toa IOIS? of Symmeéfy of the _Ic_:rr1ystal the intensities of the Fourier components are identical for
morphology, which is typical for seaweq#ig. Ac)l. The )., functions]F;|>=F;F; for i=1,2 and thereforé,|=|F,|.

relaxation of doublons happens when the initially Symmem'Hence, a shift in the spatial domain affects only the phase

cally growing fingers of the doublon are slightly perturbed. . : :
) components of the functions in the frequency domain.
Then one of the fingers takes the lead and leaves the other (i) Rotation of the functiorf(x,y) in the spatial domain

behind. When the influence of the losing finger decrease% an analed causes the Fourier transform to be rotated b
the winning finger relaxes back to dendritic growth. The re- y 9 i . . y
the same angle:f(xcosf+y sin@,-xsin 6+y cosé) be-

laxation from seaweed back to dendrites happens when the in the f q :
undercooling in the region of the crystal decreases and one gPmes In the frequency domain
the prominent tips is stabilizing and not thickening again to a F(k, coso +k, sin 6,— k, sin 6 +k, cos®). 3

critical curvature that allows tip splitting.
SRS (iii) Scaling of the spatial axes with the scaling factor

causes an inverse scaling of the frequency afésx,cy)

IV. IMAGE PROCESSING AND TRANSFORMATIONS becomes in the frequency domain
In order to scientifically investigate the acquired images 1 (ke ky
preliminary calculations are performed. The most vital step c\c'e) (4)

is to extract the contour line of the growing crystal. The

images are first preprocessed by a gray level histograr is easy to see that only translational invariance is achieved
stretching in order to obtain the maximal possible contrastn @ straightforward way. However, it is possible to convert
enhancement. Consequently the images are filtered with tH&€ functions into another coordinate system where scaling
Marr-Hildreth-operatolLaplacian of Gaussigri21] so that and rotation are represented as shifts. Let us consider the
edges are enhanced. This filter transforms the problem gfoordinate transformation of the log-polar mapping: Every
detecting the contour to finding transitions of zero crossing®oint in a given domairi.e., (x,y)" e R?] is transformed

of the filtered data. As a next step an edge detecting routinaccording to
is applied and the contour is extracted. Subsequently the con-

tour must be cleaned of extraction artifacts and reordered.

This step is not necessary for overall applied algorithms such y=esing (5)
as the shape detection method presented in the following. '

However, in order to calculate derivatives or angular distri-wherer = \x?+y?=e#, u € R is the Euclidian distance to the
butions this reordering is needed. The last step of the contowrigin, and O< <2 is the angle to the axis. It is obvious

X=¢e*coséb,
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that this mapping is bijective. In this coordinate system scal- a) %ﬂ
ing and rotation appear as shifts in the respective coordi-
nates: scaling is related to Z
(cx.cy) O (u+logc,6), (6) \<?
whereas rotation corresponds to %
(xcog @+ @) +ysin(0+ ¢),—xsin(@+ ¢) +ycod 5

£ D0 (10+ ). @) \/

Taking the Fourier transform of a log-polar mapped function

is therefore(by the properties of the Fourier transforin- b)

variant under scaling and rotation. This invariance can also \}"/
be achieved by the Fourier-Mellin-transform N

e 2
Fu(keky) = j f f(e* cosh,e” sin 0)e“k9dude. Uu
—%J0

(8) o)

It can be shown that the Fourier-Mellin transform is identical
to the combined log-polar and Fourier transfof23].

We assume two invariant operatofsand Fy,. Here F
extracts the modulus of the Fourier transform dngl the é
modulus of the Fourier-Mellin transform. When applying the
combined operators to an image,y) we find

I3 =[FumeFIf(xy). 9
The signe denotes the composition of different transforma-
tions applied to the image. The same operator can be applied fG, 3. Angular histograms of different morphologies are used

to an image, which was translated, rotated, and scaled: g select typical examples for each morphology class for the extrac-

l,=[FyeFoR(6)°S(s) o T(Xo,Yo) If(X,y) (10) tion of prototypes. Each morphology shows a different amount of
extrema in the region up to a chosen distance of 15-tip radii from
- the tip.(a) The dendritic morphology shows two distinct peats,
=[Fyv o R oo o
[P o R(0)° Fo S(s)° T0xo, Yo If(x,) (19 the doublon morphology shows four peaks, dioylthe seaweed
morphology shows a large number of uncorrelated peaks.

<
¥

1
=[FM°R(0)°S(E>°F°T(Xo,yo)}f(x,y) (12

following strategy: For every morphology class we have se-
lected a number of typical examples. For each manually se-
=[Fyp e FIf(x,y) (13 lected example the contour was extracted and reord@®&d
We then have measured the angles from each contour point

Therefore the representation is indeed invariant under rotae the next and collected these angles into a histogiam
tion, scaling, and translation. Hence the steps to achieve agular histograrn The histogram is bent to a circle to provide
RST invariant representation of an image consist§ipfi  an immediate correlation of the angular orientations to the
Fourier transform of the original image to remove transla-complexity of the crystal shape. The histograms are shown in
tional differences(ii) mapping of the calculated intensities Fig. 3. We have determined the angular histogram of the
into the (u, #) coordinate systentlog-polar mapping (i.e.,  contour line up to a chosen height of 15-tip radii from the tip
rotational and scaling differences are transformed to ghifts and found that it is possible tgualitatively characterize the
and (iii ) application of another Fourier transform in order to contours into the different morphology classes by counting
remove the newly transformed shifts. The RST invariant repthe number of extrema occurring in the histogram. For a
resentation corresponds to the intensities of the transformediendrite two extrema are fourietig. 3@)]. The length of the
image. arrows next to the dendrite tip indicate approximately the

This method of RST invariant representations is also use@eaks of the angular histogram. For the doublon morphology
in the field of machine vision and the watermarking of im- four extrema are founfFig. 3b)]. As for the seaweed mor-
ages. The idea there is to add a nonvisible “water mark” irphology the distribution is very noisy and many different and
the phase components of the RST invariant representaticuncorrelated extrema are found due to the strongly meander-
and transform it back. The hope is that the watermark pering shape of seawedéig. 3c)]. The distance of 15-tip radii
sists even if a digital image is transformed, cropped, printedwas chosen because for higher values the influence of the
and scanned again. Further details can be fourj@4r-29. side branches disturb the angular histogram and no meaning-

The RST invariant representation leads to a unique charful selection can be made any more. For the seaweed and
acterization of the different morphologies. We have adoptedioublon morphology naturally no tip radius is defined. How-
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ever, we have used the tip radius corresponding to the nomi#/6,7—7/6,3w/2. The position of the transformed con-
nal supercooling of the melt before the experiment started a®ur is then given by

the corresponding length scale. The tip radius can be ex-

pressed as a function of the supercooljad]: Pm(c) * Ta(Pa = Pmic) + To(Po ~ Pmcc) (18)

_ 0.83+0.03 wherea,b are the indicegk=1,2,3k# M(C)}. The values
RexplAT) = (5.2£0.44T ' (15 are determined by considering the following relations:
whereR,,¢is given inum andAT in K. 1
With the method of arjgulgr hlstograms it was p055|bl_e to &= —[d,— min(dy)] (19
exclude much of the arbitrariness, which was naturally given c
by the manual selection of “beautiful” nondegenerated exq
amples of each morphology class. Altogether we have use%
44 contours of dendritefselected from experiments of 6 arctariey) + /2
different supercoolings between 80 and 180 mK, 17 contours Fap=1- :
of doublons(three different supercoolings between 80 and
130 mK), and 29 contours of seawee(tree different su- The function arctan was chosen to map all possible distances
percoolings between 100 and 140 jjkas a database. Al- t0 0.5-1(e=0, obviouslyeyc, is 0). Therefore the values
though we use the capillary for seed selection, we observéor ry, are in the range €r,,<0.5. Here 0.5 is the maxi-
that not all crystals grow along the same crystal orientatiormal distance that can occur. Otherwise the distance to at least
through the capillary; thus, the contours from different ex-one other morphology would become smaller and the detec-
periments do not grow along the same directions and haviéon would find a change in the morphology resulting in a
different positions. different origin. This nontrivial mapping was chosen in order
The contours were subsequently transformed to the RSTo improve the separation of the representants of the respec-
invariant representation. For every class all transformed extive morphology classes.
ample representants were averaged in order to extract a pro- We would like to note some points about implementa-
totype for the respective class. We thus have found three 2Donal aspects of the presented method: The Fourier trans-
matrices of averaged intensities of a morphology class thdorm was implemented by using fast Fourier transform
are now considered to be prototypes: (FFT). It is well known that the FFT can only transform
vectors of length that are equal to a power of22). We
therefore have chosen a fixed size 582 9) and have de-
! termined the bounding box of our contour. If the box was
bigger than the chosen size, we have scaled the box accord-
(16)  ingly to fit into the given size. Otherwise the contour was left
as it was. As the RST transform is invariant under scaling we
were allowed to pretransform the data without changing the
results.
For the log-polar mapping we have adopted a bilinear
- back-transform scheme: instead of transforming the FFT in-
sities of the prototypes and the transformed representant&nSitiesl (x,y) to I (u, §) we have calculated for the discrete

respectively. s . )
In order to position a contour between the differentyalues of(, 0) (arbitrarily chosen size 512 eacthe result

classes we have used the following scheme: a given contoth9 intensity by bilinear mtgrpolauon from the intensities of
he FFT. Of course the size for the log-polar domain was

is first transformed to the RST invariant representation. Sub—hosen a0ain accordinaly so that it was possible to anplyv the
sequently the Euclidean distance to the three prototypes 9 gl P PRl

(20)

ko

Nk
1
o (.0)= =2 (), 1<i<N, 1<j<N
Ny =1

wherek denotes the morphology indg¢k=1 dendritic,k=2
doublon, k=3 seaweed N, and N, are the size of the 2D
domain, andn, is the number of the representants of the
morphology clask. Herelpk(i ,j) andly,(i,j) are the inten-

determined: D FFT.
Ny Ny
de=\/2> 2 [cl,i) - (D% k=1,2,3, (17) V. RESULTS AND DISCUSSIONS
j=1i=1

In Fig. 4 the temporal evolution of a growing xenon crys-
whered, is the distance to the respective morphology clasdal is shown by a superposition of extracted contours. The
andl(i,j) is the intensity of the transformed contour. The time difference between two successive contourAtisS s.
position Of the contour in the morpho'ogy Space iS deter_The fil’St contour marked by arrow 1 can Clearly be Correlated
mined as fo”ows: The morpholow of a Contourc is given to a dendritic morphology. W|th the temporal eVOlUtion the

by the minimal distance to the prototypes: dendrite tip is successively becoming massive and the tip
radius is increasing. As a consequence the tip velocity is
M(C) = Kmin g,(c)» remarkably slowing down as can be seen already qualita-

tively by looking at the distance between successive tip po-
where M €{1,2,3 determines the origin from which the sitions in the region depicted by arrow 2. When a critical
other two distances are plotted: we have these three origirsurvature at the tip is reached the tip becomes unstable and
chosen to bep;=(cog¢),sin¢))’, i=1,2,3, with ¢ performs a tip splitting leading to doublonic morphology.
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Doublon 50% ) Dendrite

Seaweed

/ FIG. 6. RST invariant morphology detection: the transition from
3 100 pm dendritic to doublonic morphology and the relaxation back to a
dendrite is marked as a pattriangles in the morphology space.
FIG. 4. Superimposed contours illustrate the temporal evolutionrhe arrows 1 and 2 indicate the directions of the transitions. The

of a crystal. The time interval between two successive contours igjrcles in each corner represent the position of the examples chosen
At=5s. A morphology change from dendritiarrow 1) to dou-  tg extract the prototypes.

blonic (arrow 3 morphology can be observed. The transition takes

place by an increase of the tip radius, which leads to a tip splittingyafore the tip splitting the distance to the dendrite prototype
(arrow 2. is increasing. Shortly after the splitting the morphology de-

_ tection indicates a morphology change. Although the de-
Due to the method, morphology changes are induced we aig 1o class of the contours is found to be doublonic, the

only able to observe transient morphology states as mensonioyrs remain initially quite far from the doublon proto-

tioned in Sec. IIl. After a whilgas a consequence of the fact e ith the increasing size of the tips growing in parallel,
that the experimental conditions at the two tips are not ideng,\vever. it moves closer to the prototype. Due to the tran-

tical) one of the tips will eventually have an advantage overgiont nature of this morphology change the influence of the

the other and outgrow it. The winning tip will after a relax- outgrowing winning tip becomes noticeable, which leads to

ation time, when the influence of the decelerating finger of, jncreased distance from the doublonic prototype again. As
the doublon is more and more fading away, relax to a deng,q \yinning tip “feels” less influence from the other tip the

dritic morphology again. This is depicted in Fig. 5. We haveyqphological position moves rather abruptly back to the
applied the RST invariant prototype matching to this mor-yengyitic morphology as depicted by arrow 2 in Fig. 6.
phology change. The result is given in Fig. 6. The example ap eyen more complex behavior of morphological transi-
representants, which were used to extract the prototypes, afg s is given in Fig. 7. Again the evolution of the crystal is
plotted as circles in their respective morphology class. It capown by superimposed contours with time staps5 s. It

be seen that the first contours are found to be dendritic ag easy to see by eye that the starting morphology is den-
expected. Simultaneously with the increase of the tip radiugitic The same scenario as in the first example occurs in the

beginning: the increase of the tip radius corresponds also to
an increase of the distan¢arrow 1) from the dendritic pro-
totype. Again a tip splitting leads to a change of the morphol-
ogy class to a doublogarrow 2. However, this time the
doublonic structure is not able to evolve as the right tip is
taking the lead immediately and grows bigger increasing the
tip radius and a little bit later the left tip starts behaving as a
degenerate side branch very near {fwénning) tip. The
structure altogether evolves into a seaweed morphology. It
can easily be seen that in the presented morphology plot
(Fig. 8 a smooth transition between the three morphology
classes is found.

For the first time it is possible to quantitatively specify
paths of morphology transitions in the morphology space and
to compactify results of experimentally grown diffusional

FIG. 5. Superimposed contours of the relaxation of the doublor@rowth structures into easily readable summaries of different
morphology to dendritic morphology. Due to experimental inhomo-transitions.
geneities, the left tip has a small advantage over the right one and We have presented a method of RST invariant morphol-
outgrows it and thus evolves back to a single tip dendriticogy detection based on properties of the Fourier transform
morphology. and the log-polar mapping. We have shown that it is possible
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Doublon 50% Dendrite
1 ——> o%ngps

Seaweed

FIG. 8. RST invariant morphology detection: the transition from
100 um dendritic to a short period of doublon and the change to the seaweed
morphology is marked as a smooth and continuous (s&fharesin
FIG. 7. Superimposed contours of a three morphology transithe morphology space. The arrows 1-3 indicate the directions of the
tion: the starting morphology is dendriti@rrow 1). After a tip transitions. The circles in each corner represent the position of the
splitting (arrow 2 it remains for a short while a doublon; however, €xamples chosen to extract the prototypes.

one tip immediately takes advantage and the morphology changes . . . .
to sea?/veedarroway. g P 9 gsented method is rather robust on detection. With this

method it is possible to overcome the limitations of a human
to quantitatively describe the morphology transitions as pathgperator: namely, we can automate the process and receive
in the morphology space. It was stated that the changes éfuantitative information about morphologies and their devel-
patterns are usually smooth, however with the notion that thepment with time. It should be noted that this quantitative
distances between two successive images tend to get biggeeasure should not be interpreted as, for example, “how
upon a qualitative change of the respective morphologydendritic” a structure is. It is rather possible (9 qualita-
class. tively classify a given structure instead a@id furthermore

We would like to mention that this method might have retrieve quantitative information about which additional fea-

also a small drawback: when analyzing bigger structuregures (i.e., doublonic, seaweed like, dendrjtithe given
with side branches of the size comparable to the tip or evestructures possess depending on the distance from the respec-
bigger, it might happen that the detection may fail. For ex-tive morphology prototype.
ample, a seaweed structure could be interpreted as a dendrite We believe that the presented method could be of some
because of a prominent side branch. The same could happese for other fields of research where qualitative and quanti-
with a dendrite having two big neighboring side branchestative information of different classes of patterns has to be
Due to the rotational invariance, the detection would eventufound and detected.
ally pretend to find a doublon. We would like to emphasize
thi)i/t Fihis is not a failure of the method itself but rgther a ACKNOWLEDGMENTS
logical consequence of analyzing rotational invariant struc- We thank Professor H. R. Ott for his support of our ex-
tures. We have found, however, that this case happened onperiments. This work was supported by the Swiss National
on two of 650 analyzed contours, which proves that the preScience Foundation.

[1] S. S. AugustithisAtlas of the Textural Patterns of Ore Miner- fication (Kluwer Academic, New York, 2002
als and Metallogenetic Processéde Gruyter, Berlin, 1996 [7] L. I. Rubinstein,The Stefan ProblerfAmerican Mathematical

[2] J. S. Langer, inChance and MatterLes Houches, Sessions Society, Providence, RI, 197.1
XLVI, 1986, edited by J. Souletie, J. Vannimenus, and R. Stora [8] E. Brener, K. Kassner, H. Miiller-Krumbhaar, and D. Temkin,
(Elsevier Science, Amsterdam, 198pp. 629-711. Int. J. Mod. Phys. C3, 825(1992.

[3]J. P. Gollub and J. S. Langer, Rev. Mod. Phy&l, S396 [9] E. Brener, H. Miller-Krumbhaar, and D. Temkin, Europhys.
(1999. Lett. 17, 535(1992.

[4] Branching in Natureedited by V. Fleury, J. F. Gouyet, and M. [10] E. Brener, H. Miller-Krumbhaar, and D. Temkin, Phys. Rev. E
Leonetti(Springer, Berlin, 2001L 54, 2714(1996.

[5] Solids Far From Equilibrium edited by C. Godréch€Cam- [11] S. Akamatsu, G. Faivre, and T. |hle, Phys. Rev5E 4751
bridge University Press, Cambridge, England, 1992 (1995.

[6] D. M. Stefanenscuscience and Engineering of Casting Solidi- [12] |. Stalder and J. H. Bilgram, Europhys. Le&6, 829 (200J).

031601-8



QUANTITATIVE DESCRIPTION OF MORPHOLOGICAL.. PHYSICAL REVIEW E 70, 031601(2004

[13] H. M. Singer, Master thesis, Eidgendssische Technische Hochi21] D. Marr and E. Hildreth, Proc. R. Soc. London, Ser.2B7,

schule, Zirich-CH, 2001. 187(1980.
[14] M. E. Glicksman, R. J. Schaefer, and J. D. Ayers, Metall.[22] H. M. Singer and J. H. Bilgram, J. Cryst. Grow®61, 122
Trans. A 7A, 1747(1976. (2004).
[15] A. C. Sinnock and B. L. Smith, Phys. Ret81, 1297(1969. [23] R. D. Brandt and F. Lin, Pattern Recogn. Lett7, 1001
[16] Rare Gas Solidsedited by M. L. Klein and J. A. Venables (1996.

(Academic, New York, 1977 [24] J. J. K. Ruanaidh and T. Pun, Proceedings of ICIP 1997
[17] E. Huarlimann, R. Trittibach, U. Bisang, and J. H. Bilgram, IEEE International Conference on Image Processing, edited by
Phys. Rev. A46, 6579(1992. IEEE Computer SocietylEEE, Los Alamitos, CA, 1997 p.

[18] U. Bisang and J. H. Bilgram, Phys. Rev.®, 5309(1996. 536.

[19] E. Brener and D. Temkin, Phys. Rev. ¥, 351(1995. [25] J. J. K. Ruanaidh and T. Pun, Signal Proce’8.303(1998.

[20] A. Karma, Y. H. Lee, and M. Plapp, Phys. Rev.@®, 3996 [26] B. S. Reddy and B. N. Chatterji, IEEE Trans. Image Process.
(2000. 5, 1266(1996.

031601-9



